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Abstract

NASA is actively involved in the development of enabling technologies that will

lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off

Vertical Landing (STOVL) and high angle of attack performance. Because of the high

degree of dynamic coupling between the airframe and propulsion systems of these types of

aircraft, one key technology is the integration of the flight and propulsion control. The

NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control

(IFPC) technologies is an in-house research program referred to as IMPAC - Integrated

Methodology for Propulsion and Airframe Control. The goals of IMPAC are to develop a

viable alternative to the existing integrated control design methodologies that will allow for

improved system performance and simplicity of control law synthesis and implementation,

and to demonstrate the applicability of the methodology to a supersonic STOVL fighter

aircraft. Based on some preliminary control design studies that included evaluation of the

existing methodologies, the IFPC design methodology that is emerging at the Lewis

Research Center consists of considering the airframe and propulsion systems as one

integrated system for an initial centralized controller design and then partitioning the

centralized controller into separate airframe and propulsion system subcontrollers to ease

implementation and to set meaningful design requirements for detailed subsystem control

design and evaluation. This paper provides an overview of IMPAC and includes detailed

discussion of the various important design and evaluation steps in the methodology.

, IDr. Mattern is with Sverdrup Technology Inc.
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Introduction

The desire to enhance the overall performance of complex, multi-element,

dynamically coupled systems has fostered much research in integrated sys_em control

design methodologies. Significant performance gains may be achievable by for_ulating the

multi---element, dynamically coupled system control design problem in an integrated system

framework rather than an after-the-fact, ad hoc combination of individual element control

designs. The goal of integrated controls research is to develop integrated control design

methodologies, and demonstrate their advantages, such that these methodologies are

available to the control system designer when faced with the multi---element, dynamically

coupled system control design task.

One example of a multi-element, dynamically coupled system which has been the

subject of control design methodology research is the Short TakeOff and Vertical Landing

(STOVL) aircraft. The use of forces and moments produced by the propulsion system to

extend the flight envelope of the aircraft results in significant dynamical coupling between

the airframe and propulsion systems. This coupling is such that traditional methods of

aircraft control design, (e.g., separately designed flight control and propulsion control

systems) are not adequate to the task. While a STOVL aircraft and its accompanying

flight and propulsion control systems have been operating successfully for some years (i.e.,

the AVS-Harrier), the STOVL aircraft concepts currently under study include supersonic

flight capabilities and therefore embody significantly more complex systems than previous

subsonic STOVL configurations. The additional system complexity present in the

supersonic STOVL aircraft and the significant potential performance gains in terms of pilot

workload reduction and improved dynamic performance that may be realized from an

integrated control design approach have spurred research into Integrated Flight and

Propulsion Control (IFPC). The goal of the IFPC research has been the development and

validation of control design methodologies which directly consider the significant dynamical

coupling between the airframe and propulsion systems of STOVL aircraft and thereby
t
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result in improved overall systemperformance.Further, while integration of the flight and

propulsion controls is explicitly addressed,the effort attempts the control integration of

more than two subsystemstowardsthe moregenericcontrol integration problem.

In the early 1980's,the Air Forcecommissioneda study called DesignMethods for

Integrated Control Systems(DMICS). This study sought to identify and develop IFPC

control laws for an advancedtactical aircraft. The particular aircraft configuration chosen

for the DMICS study included thrust-vectoring and thrust-reversing capabilities which

resulted in additional dynamic coupling (beyond a conventional aircraft configuration)

between the propulsion and airframe systems. The results of the study were two IFPC

designmethodologies,1) a centralized designapproach ,Ref. [1], and 2) a decentralized,

hierarchical approach,Ref. [2], to be applied to the IFPC designproblem. Subsequentto

the Air Force DMICS studies, the NASA Lewis Research Center (LeRC) identified IFPC

as an enabling technology for supersonic STOVL aircraft and initiated research in this

area. One study, under a NASA Lewis and Ames sponsored program contracted to an

industry team, seeks to apply the DMICS decentralized, hierarchical design approach to an

ejector configured supersonic STOVL aircraft (E---TD), Ref. [3]. The goal of this study is to

determine the applicability of DMICS decentralized, hierarchical design approach to the

supersonic STOVL IFPC design problem. In parallel to this sponsored program, NASA

LeRC began an in-house study of IFPC design methodologies. The goal of the NASA

LeRC in-house research program is to further study existing IFPC design methodologies to

identify their strengths/weaknesses and, based on this experience, make modifications to

the existing IFPC methodologies and/or formulate new integrated control design

methodologies that can be applied to a broad class of aerospace systems that exhibit strong

coupling between the various sub-systems.

The NASA LeRC in-house research program has

Methodology for Propulsion and Airframe Control (IMPAC).

IMPAC program was evaluation studies of the two DMICS control design methodologies.

been named Integrated

The first phase of the
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Thesestudiessoughtto further identify positive and negativeaspectsof the DMICS design

methodologiesto allow a judgment of their applicability to IFPC design. The centralized

DMICS study, Ref. [4], showed that while the centralized approach promises "optimal"

system performancewith respect to the specifieddesign criteria, it suffers from control

designtechnique limitations which result in a complexcentralized controller. Difficulties

would arise in implementing a centralized controller in existing airframe-propulsion

control system structures and there are issuesof independentsubsystem(e.g., propulsion

system) control validation. The decentralized,hierarchical studies, Ref. [5], showedthat

the decentralizedapproachresulted in simpler, easyto implement controllers and allowed

the individual subsystemcontrol designersto formulate their control designsto best match

the subsystemperformancerequirements. However,all the various subsysteminteractions

cannot be accountedfor within an integrated framework in the decentralizedapproach.So

this approach is fundamentally highly iterative and would generally yield inferior

performance due to its inherent design conservatism. Also, the assumption of weakly

coupled subsystemsis critical to the successfulapplication of the decentralizedapproach.

Thus a decentralized control design approach might not meet the integrated control

requirementsfor a systemconsistingof highly coupledsubsystems.

Based on the experiencegained with the example DMICS design studies, the

IMPAC program has formulated a new IFPC design methodology that considers the

airframe and propulsionsystemsasoneintegrated system. An initial centralizedcontroller

designfor the integrated systemwill be performedat each designpoint using appropriate

modern multivariable robust control design techniques. Note that in this context,

centralized controller implies a controller designed using a plant model obtained by

integrating all the subsystems,and suchthat the controller acts on all the outputs of the

integrated plant to generatecommandsfor all the control inputs of the integrated plant

without anypre-specified controller structure. Sometimesthe word "global" is usedin the

control literature to describethis type of controller. Thesecentralized controllers will then
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be partitioned into separate airframe and propulsion system subcontrollers to ease

implementation, address nonlinear issues and allow independent subsystem validation. The

vehicle to be used for development and validation of the IMPAC design methodology is the

same ejector configured E-7D aircraft being used in the industry IFPC study. Since the

centralized control design under IMPAC will be done using modern multivariable control

synthesis techniques, an important research goal for the IMPAC program will be to

determine whether these techniques can be effectively used to design IFPC systems for

operation over the entire flight envelope of a supersonic STOVL aircraft.

In the following, the overall IMPAC design methodology is first presented and the

various elements of the methodology are briefly described. This is followed by a more

detailed discussion of those individual areas which are critical for overall IFPC

methodology development and demonstration, and/or areas in which the IMPAC design

approach differs significantly from the existing IFPC design techniques. The paper

concludes with a brief summary of the goals of the IMPAC program and the achievements

to date.

IMPAC -- Methodology Philosophy

The philosophy driving the formulation of the IMPAC design methodology is that

maximum performance (e.g., pilot handling qualities, pilot workload, etc.) from an

integrated system will best be achieved when a highly integrated control design process is

used. Accordingly, the IMPAC design methodology strives to provide the control designer

with a well---defined, integrated control design approach to the IFPC problem. The

IMPAC design approach to the IFPC control problem is a centralized control design for

the integrated airframe/propulsion system followed by partitioning of the centralized linear

controller into separate airframe and propulsion linear controllers. The centralized linear

control design approach best considers the integrated nature of the control design problem.

However, a centralized controller may be neither consistent with current IFPC

implementations nor best suited to the individual elements (e.g., propulsion system)
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resulting from this implementation. Partitioning of the centralized controller into

subsystem controllers establishes a performance baseline to be met during subsystem

control design,allows for the realistic implementation of the centralized control laws, and

also permits the inclusion of specific nonlinear control logic pertinent to a particular

subsystem(for example, propulsion system safety limits). Therefore, included in the

IMPAC design approach is the mathematical basis to perform this centralized controller

partitioning.

An overall system control designprocessconsistsof many distinct tasks, not all of

which are strictly control design tasks. Someof these tasks are common to any control

designmethodology(e.g., definition of the systemrequirements,systemdynamic modeling)

and therefore are not specifically addressedby the IMPAC designmethodology. Figure 1

showsthe relationshipof IMPAC in an overall systemcontrol designprocess. The IMPAC

designprocessrequires several forms of information about the system to begin the IFPC

designprocess. The aircraft and propulsion system configuration and requirements must

be defined. Desired performance (e.g., handling qualities) must be formulated. Full

nonlinear dynamic modelsof the airframe and propulsion systemare needed. Finally, the

necessaryopen-loop dynamic studies of systemperformanceneedto be performed. With

this information the IMPAC designmethodologyformulates the control laws for the IFPC

system. These control laws are then subjected to a variety of evaluations including

pilot-in-the-loop testing. Results of theseevaluationsareusedin subsequentcontrol law

designiterations.

IMPAC - MethodologyFlowchart

A flowchart of the IMPAC design methodology is presented in Fig 2. This

flowchart identifies major tasks and features of the IMPAC approach and provides a

detailed view of the methodology. What follows here is a brief description of the design

steps as shown in Fig. 2. A more detailed technical description of the tasks central to the

IMPAC methodology are presented later in this paper.
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Given that integrated, nonlinear dynamic models for the system are available, the

first task in the IMPAC design methodology involves generation of dynamic models to be

used for control law synthesis (Block 1). These control design models are, in general,

traditional linear perturbation models of the system taken at various operating points. It

should be emphasized that the linear models used for control design are of the integrated

system, i.e., airframe and propulsion systems along with coupling dynamics. An important

issue in a centralized linear IFPC design approach is how nonlinearities of subsystems (e.g.,

propulsion system) will effect the validity of the centralized linear control law synthesis.

Specifically, propulsion system nonlinearities such as fuel flow acceleration/deceleration

rates will not be reflected in small perturbation linear models and therefore cannot enter

the centralized control design process. However, in final implementation, these

nonlinearities may in fact dominate the subsystem response.

One method to address the issue of subsystem nonlinearities being investigated by

IMPAC is how nonlinearities can be considered before the linear control law design process

begins. Therefore, some "conditioning" of the control design models is envisioned in the

control model generation task of the IMPAC approach. This conditioning may include

such features as feedback linearization or large perturbation linearization such that the

effects of subsystem nonlinear behavior enter early in the control design process. The final

product of the control model generation process is a set of operating point specific, linear,

state-space dynamic models of the integrated system that will allow a "realistic"

centralized control design.

The centralized control law design process and subsequent controller partitioning

are major elements of the II_IPAC methodology. The centralized control design process

(Block 2) uses the full system state-space linear control design models previously

developed and is based on available multivariable linear control design techniques that

have the capability to meet the IFPC requirements. Design criteria formulated from

system performance requirements and system open-loop dynamic studies provide the
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necessarycontrol designspecifications(e.g., frequencyor time dependentweighting factors)

for the chosenlinear designtechnique. The centralizedcontrol law is evaluated against the

designspecificationsand appropriate modifications made. Becausethe linear control law

synthesistool may result in a high order centralizedcontroller, controller reduction may be

performed at this point in the method. A detailed description of centralized control law

design is presentedlater in the paper. The result of this processis an operating point

specific, centralizedlinear feedbackcontroller for the integratedsystem.

Once the centralized controller is designed,mathematical techniques have been

developedto partition the centralized linear controller into linear sub---controllers(Block

3). The controller partitioning task requires that a candidate control structure for the

partitioned system be specified. For example,for the IFPC problem, the assumedcontrol

structure is hierarchical with the airframe (flight) control partition exercising some

authority over the propulsion partition. The IMPAC methodologyallowsmany candidate

control structures to be consideredat the partitioning level basedupon the requirementsof

the system. Comparisonsbetween the centralized and partitioned linear controllers are

made to validate the partitioning process. Subsystemcontroller reduction may take place

asdesired. Again, a detailed description of the controller partitioning processis presented

later in the paper. The result of the controller partitioning task is a set of subsystemlinear

controllers which, when reassembled,approach (within some desired tolerance) the

performanceof the centralizedcontrol design.

After completion of the linear control design tasks, individual subsystem control

designmust be performed. In general, the subsystemcontrol design task will include

accounting for the effects of subsystemnonlinearities in the subcontrollersresulting from

the controller partitioning task. Severaltypes of subsystemnonlinearitiesare consideredin

IMPAC. The first involves extension of the individual subsystemcontrollers to full

envelope (as defined by the system requirements) 0pe-ratk)n(Biock 4). Typically this

would involve gain scheduling of individual operating point controllers to account for



parameter variations (e.g., control power, atmosphericconditions). It is envisioned that

the useof modern robust control synthesistools will easethe burden of the full envelope

control formulation.

The secondsubsystemnonlinear control design task (Block 5) incorporates any

additional subsystemnonlinearities into the subsystemcontrollers. Nonlinearities such as

propulsion system safety limits are consideredin this task. For example, the propulsion

systemwould require fuel flow control limit logic to ensurethat enginesurge margins are

maintained. After the appropriate nonlinear control loops have been designed, the

subcontrollerscanbe validated usingthe appropriate subsystemdynamic models. A more

detailed discussionof subsystemnonlinearities consideredin IMPAC is presentedlater in

the paper. The result of this task is the nonlinear limit and accommodation logic to be

addedto the full envelopesubsystemcontrollers.

The final task in the IMPAC design approachis reassemblyof the full envelope,

nonlinear subsystem controllers to form the desired implementation of the centralized

control law (Block 6). Additional design options such as global nonlinear optimization

may beperformed at this point. Evaluations of the final controller would take Placeusing

both nonlineardynamic modelsand pilot-in-the-loop (PITL) facilities, Theseevaluations

would test the actual system performance (e.g., handling qualities) against the desired

systemperformancespecifications.

It should be noted that as with any designprocess,actual implementation of the

IMPAC methodologywill likely involve iterative designsteps. For example, the nonlinear

design evaluation may exposecertain designdeficiencieswhich require reformulation of

centralizedlinear control laws. However, the integrated control designapproachcontained

in the IMPAC methodologywill reducethe number and severityof the designiterations.

Integrated Control Design

The IMPAC control designstructure is asshownin Fig. 3. The control elementsto

bedesignedare the Configuration Management,CommandShaping/ModeSwitching Logic,
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the Integrated Control consisting of the Airframe and Propulsion system subcontrollers,

and SensorCompensation. The Configuration Management consists of generating trim

commandinformation for the small perturbation commandtracking inner-loop integrated

control basedon the pilot commandsand the aircraft mode of operation. The Command

Shaping/Mode Switching logic consistsof converting pilot inputs to the control effectors

into commandsto be tracked by the integrated control and its design is driven by the

handling qualities requirement.This logic alsoensuresa smooth transition betweenaircraft

operational control modes. The Sensor Compensationdesign consists of generating the

inputs to the integrated control from the various aircraft measurementsand will include

things like sensoraliasing and normalization, estimation using complimentary filters etc.

The designof theseelementsother than the CommandShapingportion, i.e. Configuration

Management,Mode Switching logic and SensorCompensation,under IMPAC will be done

using standard techniquessuch asthoseusedin in the:ong0ing STOVL controls contract

program (Ref. [6]), for example.Sotheseelementsare not discussedfurther in this paper.

The major development effort under IMPAC is on the Integrated Control design which

consistsof linear control design followed by nonlinear extension of the controller for

operation over the flight envelopeof the aircraft.

As shown in Fig: 4, the linear control design portion of the IMPAC approach

consistsof three major design steps: (i) Design of a centralized feedback controller to

provide command tracking, stability and performance robustness, based on the fully

integrated airframe/propulsion modelasa singlehigh---ordersystem, (ii) Partitioning of the

centralizedcontroller into decentralizedsubcontrollerscompatible with desiredstructure of

control implementation, and (iii) Designof commandshapingprefilters from pilot control

effectorsto commandedvariables to provide the overall desired responseto pilot inputs.

The command shaping prefilter design will be accomplishedusing the multivariable

band-limited inversemethod of Ref. [7]. This method consistsof formulating the prefilter

synthesisproblem within the framework of the linear quadratic stochastic control problem
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with the feedbackclosed-loop system as the plant. This formulation provides for setting

the bandwidth of the prefiltering action by properly selecting the control weighting in a

regulator problem. Suchan approachallows the control designerto obtain a prefilter for

desiredresponseto commandinputs without altering the feedbackpropertiesof the control

loop. This approach has been successfullydemonstratedin Refs. [1,4] and is not further

discussedfurther in this paper. The details of centralized controller design, controller

partitioning and nonlinear control extensionsarediscussedin the following.

Centralized Controller Design

The major issue related to the feedback controller design portion of IMPAC, i.e.

Block 2 of Fig. 2, is the choice of the control synthesis technique that "best" suits the

IFPC objectives. Not only should the synthesis technique allow a formulation of centralized

control design criteria that adequately reflects the performance specifications of the "total"

system i.e. the airframe integrated with the propulsion system, but it Should also result in

controllers of reasonable order with guaranteed performance and robustness characteristics.

Robustness is of special importance because there are many modelling uncertainties and

errors associated with the design plant due to neglected/unknown dynamics, nonlinearities,

parameter uncertainties, actuator rate and limit saturations, etc. The Linear Quadratic

Gaussian/Loop Transfer Recovery (LQG/LTR) approach was used for the centralized

IFPC control design in the DMICS study of Ref. [1]. However, as pointed out in Ref.[4],

the strength of the LQG/LTR methodology is synthesizing command tracking control laws.

One of its weaknesses is its inability to address the issue of plant augmentation. Since plant

augmentation is an integral part of flight control law design, and because of other

drawbacks associated with the LQG/LTR technique (see discussion in Refs. [4,8]), this

methodology was considered to be inadequate for the task of centralized IFPC design.

Other multivariable control design techniques such as LQG, optimal control using

parameter optimization, multivariable root-loci, etc. do not provide any guaranteed

robustness characteristics and/or are in general too cumbersome to apply to large, strongly

r f-
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coupled systems in that these are too computationally intense requiring many iterations

over the design parameters.

An emerging control synthesis technique that has the promise to meet the IFPC

design requirements is the H-infinity (H®) control theory (Refs. [9,10]). Recent advances in

computational algorithms (Ref. [11]) have made this theory a viable candidate to be

applied to complex multivariable control design problems. In gross terms, this technique

provides the designer the means to synthesize a controller for "best" guaranteed

performance in the presence of "worst case" disturbances (and/or commands). Proper

formulation of the control design problem using H theory provides for building-in

stability robustness and obtaining an adequate trade---off between performance and

allowable control power in the resulting controller. Recent preliminary studies of IFPC

design for STOVL aircraft using H control theory have been very successful (Refs.

[12,13]), thus affirming the viability of using this approach for centralized feedback control

design portion of IMPAC. It is important to note here that the overall integrated control

design philosophy under IMPAC is not dependent on any particular choice of control

synthesis technique. Any future synthesis technique which has the capability to meet the

IFPC design requirements stated earlier can be substituted in place of the current choice of

H control synthesis.

The detailed block diagram for the H formulation of the IFPC feedback control

design within the framework of a command tracking problem is shown in Fig. 5. The three

transfer functions that are of interest for such a problem are the sensitivity function S(s),

the complementary sensitivity function T(s), and the control transmission function C(s).

These represent the closed-loop transfers from the reference commands (and disturbances)

to tracking errors, controlled variables and commanded control inputs, respectively, i.e.

e=S(S)Zc, z=T(s)z c and u=C(s)z c. In order to influence both the low-frequency and

high-frequency properties of the closed-loop system it is desirable to find a controller K(s)

which minimizes a weighted norm of a combination of these three transfer functions, i.e.
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[Ws sminllH(j )l[ with H(jw)= WT(J_ )- T(jw)

[Wc(Jw)" C(jw)

Note that HH(jw)II_ is the highest value over all frequencies w of the maximum singular

value of H(jw), i.e. IIH(jw)H®= max a[H(jw)].
o)

The weighting functions Ws(Jw), WT(J_), and Wc(Jw ) are the parameters used by

the control designer to "tune" the controller K(s) such that the design objectives are met.

For instance choosing W S to be large at low frequency ensures good command tracking

performance and choosing W T to be large at high frequencies ensures robustness to high

frequency unmodelled dynamics. The control weighting W C is chosen to ensure that

control actuation bandwidths, rate and position requirements are practically achievable.

A procedure for building-in robustness to plant modeling uncertainties within the

framework of the tt control problem formulation is to use fictitious internal model
{D

disturbances as exogenous inputs to the design plant. The disturbances models are

developed to mimic the effects of modelling uncertainties. These uncertainties are

quantified during the design model development work. Such a formulation has been shown

to induce robustness in the H control design in Ref. [14] and has been successfully applied

to robust IFPC design in Ref. [13].

Controller Partitioning

Generally, the centralized IFPC controller obtained by application of the above

procedure will be of high order and generally too complex to implement. Such a controller

might also contain many feedback paths which are not physically realizable. Also,

traditionally it is the responsibility of the engine designer/manufacturer to ensure that the

engine will provide the desired performance when installed in the airframe. The engine

manufacturer also needs a separate engine controller to be able to independently perform

extensive testing to assure an adequate design and engine integrity. To address these

difficulties, the idea of partitioning the Qentralized controller (Block 3 in Fig. 2) into
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separateairframe and propulsion system subcontrollers was introduced in Ref. [4]. The

desiredstructure of controller partitioning will dependon the coupling betweenthe various

subsystemsand on practical considerationsrelated to integration of the independently

controlled subsystems.A decentralized,hierarchical control structure as shown in Fig. 6

was chosenfor controller partitioning in IMPAC. In Fig. 6, the subscript "a" refers to

airframe quantities, "e" refersto propulsionsystemquantities, and "c" refers to commands.

The intermediate variables, Zea, represent propulsion system quantities that affect the

airframe, for examplepropulsive forcesand moments. The partitioning shownin Fig. 6 is

simplified in that the controlled output errors are assumedto be the only inputs to the

subcontrollers, i.e. the measurement vector y of Fig. 4 is assumed to be zero. This

assumption is being made here strictly to keep the following discussion simple while

conveying the basic idea behind formulating and solving the controller partitioning

problem. The actual IMPAC proof---of-concept designs will be done using both y and z.

The controller partitioning problem of Fig. 6 can be stated as follows :

and e ---
Given: K(s) s.t. u(s) = K(s).e(s), where u = Ue ee

Find: Ka(S), Ke(S ) and a particular set of Zea with

"a(S)l r ee(S)]
[eea(S)j

So that: The closed-loop performance and robustness with the subcontrollers

Ka(S ) and Ke(S ) match those with the centralized controller K(s) to a

desired accuracy.

A state-space parameter optimization based algorithmic procedure to solve the

above controller partitioning problem is currently being developed. Some preliminary

results using this approach are available in Ref. [15]. The major steps in this approach to

controller partitioning are shown in the flow chart of Fig. 7 and are discussed in the

following.

IJ
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Ste____p_!: Make an initial guess for the state-space parameters of the airframe and

propulsion subcontrollers. In order to keep the number of parameters to the smallest

possible value for the specified subcontroller orders, the structure of the state-space

matrices of the subcontrollers will be chosen as suggested in Ref. [16]. Since numerical

parameter optimization techniques are very sensitive to the initial guess for the

parameters, it is very important to start the iterations with a "good" initial guess. A

systematic procedure for determining an initial controller partitioning is documented in

Ref. [17]. The application of this procedure to an example IFPC design in Ref. [17] resulted

in good matching of the centralized controller performance with the initial partitioned

subcontrollers thus demonstrating the feasibility of the controller partitioning idea.

Step 2: Calculate the state---space representation of the controller (IZ(s)) obtained by

"assembling" the partitioned subcontrollers. This "assembly" is done by using the plant

information to remove the controller dependence on the interface variables Zea so that the

assembled controller will have the same inputs and outputs as the original centralized

controller. The cost to be minimized in the optimization procedure is chosen to be the

infinity norm of the weighted difference between the centralized controller and the

assembled controller, i.e., Minimize J(P) = II(K-I_(P)).W(jw)ll_ where P is the set of

design parameters for optimization. Minimizing the infinity-norm ensures that the

assembled controller closely approximates the centralized controller, and the frequency

dependent weighting is used to emphasize the frequency range and the directions in which a

"good" approximation is desired. For instance, choosing W(jw)=G(j_), the controlled

plant, ensures that the closed loop system with the partitioned controllers will closely

match the performance and robustness characteristics of the system with the centralized

controller.

Ste___p_3: Check whether the cost for the parameter set at step i, J(Pi)' is the

minimum achievable. If yes, then go to Step 6, otherwise go to Step 4.

Step4: Calculate the gradient of the cost with respect to the parameters Pi" To
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speedup the computations, analytical expressionsfor the gradients will be used in the

partitioning computercodes.

Step_5: Calculatethe next feasibleset of parameterswhich lowers the cost.Standard

algorithms such as the Quasi-Newton method with BFGS

(Broyden-Fletcher-Goldfarb-Shano) update of the Hessianapproximation [18] will be

usedto implement this step. Go to Step2.

Ste_.__66: Once the "optimal" set of parameters is obtained, the closed-loop system

performance and robustness with the partitioned controllers is evaluated and compared

with that achieved with the centralized controller. If the performance achieved with the

subcontrollers is not acceptable, then the partitioning procedure is repeated with one or

more of the following changes : (i) Different initial guess for the parameters keeping the

subcontroller orders the same, (ii) Increased order of airframe and/or propulsion

subcontrollers, (iii) Different choice of weighting W(jw), and finally (iv) Different

partitioning structure i.e. changing the split of the centralized controller inputs and

outputs between the subcontrollers (choice of ea, e e and ua, u e respectively), and/or

different choice of the interface variables Zea.

Once an acceptable controller partitioning is obtained, the subcontrollers may be

further reduced in order using modern controller reduction techniques and will be

simplified by removing the feedback paths of least significance. Note that by comparing the

performance obtained by various partitioned controller implementations of different level of

complexities with that obtained by the centralized controller, a meaningful trade--off can

be obtained between implementation controller complexity and achievable performance.

Nonlinear Considerations

Nonhnearities that should be accounted for in the IFPC design can be grouped as

follows: variations in the plant system matrices (A,B, C & D) caused by changes in the

nominal operating condition; "hard" actuator limits; and operational limits imposed on the

plant outputs. It is assumed that variations in the matrix elements of a linear model are



17

slow relative to the plant dynamics(Ref. [19]). For example,changesin the lift coefficient

as a function of dynamic pressure appear as variations in the matrices of an airframe

model. "Hard" actuator limits consist of mechanical stops and slewing rates imposed by

the hardware. The maximum rate of change of an engine nozzle area and the maximum

flap deflection are examples of "hard" actuator limits. Safety limits are self imposed limits

on the plant output required to protect and to extend the life of the plant. If the limited

output is unmeasurable, then the limit can be reflected back to the inputs based on a model

of the plant. Safety limits are typical in a turbojet engine and a fuel flow

acceleration/deceleration schedule is an example of such a limit. The

acceleration/deceleration schedule bounds the engine fuel flow to limit the maximum

turbine temperature and the minimum compressor surge margin (Ref. [20]). An example of

a measurable safety limit in a turbojet engine is the limit placed on the maximum fan rotor

speed.

It is possible to address certain nonlinearities in the linear control design. Slow

variations in the plant system matrix ("A"), can be modelled as uncertainties and can be

addressed using robust control design techniques. Gross variations in the control

effectiveness matrix ("B") are best addressed outside of the linear control design using gain

scheduling (Ref. [21,22]). Actuator rate and range limits can be accounted for in the linear

control design. Consider a rudder actuator with a mechanical range of +/- 20 degrees and

a maximum rate of change of 40 degrees/sec. These range and rate limits can be built into

a linear design structure as inverse weights on the control and control rate authority.

Weighing both the range and the rate constitutes a frequency weight for the actuator. The

use of these weights does not guarantee that the limits will not be exceeded by the linear

controller, only that the linear control design will provide an appropriate

performance/control trade-off and will distribute the control action among the actuators

relative to their control effectiveness. These actuator weights direct the design method to

"optimally" use the available control authority to achieve the desired specifications. Safety
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limits can also be consideredin the linear design. For example, in a turbofan engine the

difference between the fuel flow for the nominal operating condition and the upper and

lower fuel flow limits due to the acceleration/decelerationschedulecan be usedto selecta

scalevalue for the fuel flow actuator in the linear designat that operating point. This

scalefactor allows the control systemdesignerto weigh the consequencesof exceedingthe

fuel flow limit versususing the other actuatorsto achievethe desiredspecifications.

Nonlinearities that cannotbe addressedin the linear designneedto be addressedby

other methods. Figure 8 showsthe major componentsof a typical nonlinear subcontroller.

Gain schedulingis usedto accountfor variations in control effectivenessdue to changesin

the nominal operating condition. For example, in the STOVL IFPC problem, during

transition from cruise to hover, as the aircraft slows down, propulsive lift replaces

aerodynamiclift as a meansto support the weight of the aircraft. As the velocity of the

aircraft decreases,the enginepower is increasedto provide the necessarylift. Increasing

the enginepower increasesthe massflow through the nozzleswhich changesthe control

effectivenessof the nozzles. Also, the control effectivenessof the aerodynamicssurfacesare

reduceddue to the reduction in dynamic pressure. The gain schedulershown in Fig. 8

accountsfor gain changeand the control power redistribution. Since zero steady state

error is a typical control objective and is achieved using integrators, integrator windup

protection is required whenever the actuator are limited. There are a variety of integral

windup protection schemes (Refs. [23,24]). Figure 8 shows one possible structure for a

windup protection scheme (Ref. [25]) that modifies the errors that drive the linear

controller. The mode selection logic indicated in Fig. 8 selects the errors used in the

control which are dependent on the limit operation and is typical of turbofan engine

operation (Refs. [26,27]).

In IMPAC, the partitioning of the linear controller results in a hierarchical

structure. A limit encountered in a lower level subsystem has to be communicated back to

a higher level if it affects the overall performance. This requires a communication path
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from the engine limit logic back to the higher level airframe control redistribution/gain

schedulinglogic to communicatewhen the engine hasencountereda limit that will affect

the thrust response,assuggestedin referenceRef. [28]. If the desiredperformancecannot

be maintained by redistributing the control authority, then the airframe controller logic

must decide how to distribute the performancedegradation. For example, if additional

thrust is requestedfrom one of three enginenozzleson the E-7D aircraft, and the rate of

changeof grossthrust is limited by the fuel flow accelerationschedule,then the resulting

thrust error canbe lumped into one nozzleif the responsefrom that nozzle is noncritical.

Alternatively, the thrust error canbeequally distributed over all nozzles. This decisionis

madeat the higher level subcontroller and requires the limit information of all lower level

subcontrollers.

These are concepts that will be used under IMPAC to extend the linear IFPC

design to full---envelopenonlinear control. Note that the controller partitioning discussed

earlier will easethis task becauseit allows for treating the airframe and propulsion system

nonlinearities separately and for each subsystemthe critical safety and limit protection

logic canbe "wrapped" around the correspondingsubcontroller.

Summary

A methodology called IMPAC (Integrated Methodology for Propulsion and

Airframe Control) for integrated flight/propulsion control design for future aircraft with

enhancedmaneuvercapabilities wasdiscussed.The significant featuresof this methodology

are that it consistsof first designinga centralizedcontroller consideringthe airframe and

propulsion systems as one integrated system and then partitioning the centralized

controller into decentralized subcontrollers (sub-system controllers) with a specified

interconnection structure. The centralized control design accountsfor all the subsystem

interactions at the design stage and provides a baseline for the "best" achievable

performancewith a fully integrated system.The partitioning results in easy to implement

subcontrollersthat allow for independentdetailed subsystemcontrol designand validation.
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The controller partitioning also allows for the system nonlinearities to be considered in

detail at the subsystem level. A meaningful trade-off between subcontroller comple:dty

and achievable performance for the integrated system can be performed by evaluating

various controller partitionings of different levels of complexities against the performance

baseline established with the centralized controller. It is expected that this methodology

will lead to control designs which provide improved system performance over the existing

integrated control design methodologies and are easy to implement. The IMPAC

methodology is to be demonstrated by application to a currently envisioned Short

Take-Off and Vertical Landing (STOVL) fighter aircraft which is powered by a high

bypass turbofan engine and is equipped with ejectors to provide propulsive lift at low

speeds and hover.

To date, an emerging multivariable control synthesis technique that meets the

requirements of the centralized control design portion of IMPAC has been identified and

the preliminary results obtained with this technique are encouraging. A decentralized,

hierarchical controller partitioning structure which yields a practically implementable

integrated flight propulsion control design has been identified and the theoretical

formulation for such a controller partitioning has been completed. Numerical algorithms to

implement the controller partitioning procedure are currently being developed.

Development of various control design and evaluation models and integrated simulations

for the study STOVL aircraft is complete and the control design using IMPAC is

progressing. Preliminary piloted simulation evaluation of the IMPAC based integrated

flight propulsion control design using the NASA Lewis Research Center fixed-base

simulator is planned for the end of the year.
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